Teorema ëd Cauchy-Lipschitz
Ël teorema ëd Cauchy-Lipschitz a fortiss che, si a l'é në spassi vetorial real ëd dimension finìa, a l'é 'n sot-ansem duvert d', a l'é na fonsion continua e localman Lipschitz ant la sconda variàbil ansima a , antlora le solussion massimaj dl'equassion diferensial a son definìe ansima a d'antërvaj duvert, ij graf ëd coste solussion massimaj a formo na partission d' e minca solussion dl'equassion a l'é la restrission d'un-a e mach un-a solussion massimal. Ël teorema a l'é stàit dimostrà da Cauchy, anviron dël 1825, për e cand e soa derivà rëspet a la sconda variàbil a son contìnoe. Lipschitz a n'ha andeboline j'ipòtesi ant ël 1876. |