Teorema ëd compatëssa
Ël teorema ëd compatëssa a fortiss che si minca sot-ansem finì ëd n'ansem T d'enonsià a l'ha 'n model, antlora ëdcò T a l'ha un model. Ës teorema a l'é stàit dimostrà për la prima vira da Kurt Gödel dël 1930 për lengage al pì numerabij. Dël 1936, Anatolij Malcev a l'ha spantialo al cas ëd T ansem d'enonsià ant un lengage pì che numeràbil. N'esempi d'aplicassionmodìficaËl teorema ëd compatëssa a l'ha vàire aplicassion ant l'àlgebra. N'esempi a l'é cost-sì: si φ a l'é n'enonsià ver an tuti ij camp ëd caraterìstica zero, antlora a-i é un nùmer natural n tal che φ a l'é ver an tuti ij camp ëd caraterìstica p>n. Dimostrassion. Ch'as consìdera l'ansem T d'enonsià ch'a consist ant j'assiòma pr'ij camp, l'enonsià e l'ansem infinì d'enonsià Për l'ipòtesi, T a l'ha gnun model, donca a-i é 'n sot-ansem finì ëd T ch'a l'ha gnun model e da sòn a-i riva la conclusion. |