Ipòtesi dël continuo
L'ipòtesi dël continuo (CH) a fortiss che a-i é gnun-a cardinalità comprèisa an manera s-ciassa antra la cardinalità dl'ansem dij nùmer naturaj e cola dl'ansem dij nùmer reaj. Nopà, as trata ëd n'enonsià indipendent da la teorìa dj'ansem ZFC. Visadì, si la teorìa dj'ansem ZFC a l'é coerenta, antlora a lo son ëdcò le teorìe ZFC+CH e , otnùe an giontandje, rispetivaman, l'ipòtesi dël continuo e soa negassion. La coerensa ëd ZFC+CH, sota l'ipòtesi dla coerensa ëd ZFC, a l'é stàita dimostrà da Gödel dël 1939, an mostrand che ël model L dj'ansem costruìbij a sodisfa sa teorìa. L'indipendesa ëd CH a l'é stàita dimostrà dël 1963 da Cohen. L'ipòtesì generalisà dël continuomodìficaL'ipòtesi generalisà dël continuo (GCH, generalised continuum hypothesis) a fortiss che, për minca cardinal infinì , ël cardinal dlongh apress a l'é , visadì la cardinalità dl'ansem potensa . |